Showing posts sorted by relevance for query satuan energi. Sort by date Show all posts
Showing posts sorted by relevance for query satuan energi. Sort by date Show all posts
08 November 2016

Pengertian Energi : Hukum Dan Satuan Energi

Pengertian Energi

Apa itu Energi? Apa pengertian Energi? Dalam keseharian sering kita dengan kata berenergi atau orang kuat yang memiliki banyak energi. Orang yang mampu mendorong mobil dikatakan sangat berenergi, air yang mampu mendorong kapal di laut dikatakan memiliki energi, begitupun dengan angin. Aki mampu menyalakan motor dikarenakan memiliki energi dan seterusnya.

Pengertian energi berdasarkan ilmu fisika adalah kemampuan untuk melakukan usaha. Kemampuan ini diukur dengan variabel waktu dan besarnya usaha yang dilakukan. Tidak ada pengertian energi selain ini yang sangat menggambarkan apa itu energi.
Dalam sistem SI, Energi memiliki satuan Joule. Satuan lain dari energi seperti KWh, Erg dan kalori digunakan dalam bidang tertentu untuk memudahkan. Konversi satuan energi dapat dilakukan melalui ketetapan bahwa 1 kalori=4.2 Joule dan 1 joule=1 watt sekon.

Energi adalah kemampuan untuk melakukan suatu tindakan atau pekerjaan (usaha). Kata “Energi” berasal dari bahasa yunani yaitu “ergon” yang berarti kerja. Dalam melakukan sesuatu kita selalu memanfaatkan energi, baik secara sadar maupun tidak sadar, Contohnya ketika kita berjalan kita memerlukan energi. Namun setiap kegiatan memerlukan energi dalam jumlah dan bentuk yang berbeda-beda. Energi tidak dapat dilihat namun pengaruhnya dapat dirasakan. Energi dapat berubah bentuk dari satu bentuk ke bentuk lainnya. Contohnya pada setrika terjadi perubahan bentuk dari energi listrik menjadi energi panas.


Satuan Energi 

Satuan Internasional untuk energi adalah Joule (J), satuan ini digunakan untuk menghormati james Presscot Joule dan percobaannya dalam persamaan mekanik panas. Satuan lain untuk energi adalah Kalori (Kal). Hubungan antara Joule dengan Kalori adalah sebagai berikut :

  • 1 kalori = 4,2 Joule atau 1 Joule = 0,24 kalori

Hubungan Joule dengan Satuan Internasional Dasar lain :

  • 1 Joule = 1 Newton-Meter dan 1 Joule = 1kg m2 s-2


Hukum Kekebalan Energi

Berdasarkan Hukum Kekekalan Energi, dapat ditarik kesimpulan bahwa :
Energi Tidak dapat diciptakan maupun dimusnahkan. Energi hanya dapat dirubah bentuknya dari satu bentuk ke bentuk lainnya. Oleh karena Itu Jumlah total energi dalam suatu sistem hanya akan berubah ketika masuk atau keluarnya suatu energi.


Macam-Macam Energi

  • Energi Potensial

Energi potensial adalah energi yang dimiliki benda karena keadaan atau kedudukannya. Kita mengenal beberapa energi potensial, antara lain energi potensial gravitasi, energi potensial pegas, dan energi potensial listrik. Namun, di sini kita akan fokuskan pada energi potensial gravitasi. Energi potensil gravitasi timbul karena adanya gaya gravitasi. Sebagai contoh, jika kita melepaskan benda dari ketinggian tertentu, benda itu selalu jatuh ke bawah. Hal ini terjadi karena benda itu memiliki potensial untuk jatuh. Dengan kata lain, benda itu memiliki energi potensial gravitasi.

  • Energi Kinetik

Energi kinetik adalah energi yang dimiliki benda saat bergerak. Energi itu akan dilepaskan (hilang) jika benda berhenti (diam). Besar energi kinetik benda ditentukan oleh massa benda dan kecepatan gerak benda. Semakin besar massa benda dan semakin cepat gerak benda, energi kinetiknya semakin besar. Benda yang bergerak lurus beraturan, bergerak lurus berubah beraturan, dan bergerak melingkar memiliki energi kinetik. Benda yang bergerak dengan kecepatan tetap memiliki energi kinetik konstan.

  • Energi Kimia

Energi Kimia adalah energi yang tersimpan dalam bahan makanan dan bahan bakar. Energi itu akan dilepaskan jika bahan makanan atau bahan bakar mengalami reaksi kimia. Sebagai contoh, tubuh kita memperoleh energi dari bahan makanan yang kita makan setelah bahan makanan itu mengalami perubahan (bereaksi dengan oksigen) di dalam tubuh. Demikian pula dengan bensin atau solar. Energi kimia dari bensin atau solar dapat diambil (dimanfaatkan) setelah bahan bakar itu dibakar.

  • Energi Cahaya dan Energi Panas

Energi cahaya dan energi panas adalah dua bentuk energi yang erat sekali hubungannya. Benda yang memancarkan cahaya biasanya disertai dengan panas, contohnya sinar matahari dan api. Sinar matahari sangat penting bagi makhluk hidup di bumi. Sinar matahari diperlukan oleh tumbuhan hijau untuk proses fotosintesis. Keberadaan tumbuhan hijau sangat diperlukan oleh hewan dan manusia.

  • Energi Listrik

Energi listrik ditimbulkan oleh arus listrik. Energi listrik merupakan energi yang paling banyak digunakan oleh manusia secara langsung. Hal itu karena energi listrik mudah dibangkitkan dan mudah diubah bentuknya menjadi energi bentuk lain, misalnya energi cahaya, panas, dan gerak. Dalam kehidupan sehari-hari, energi listrik banyak digunakan untuk penerangan dan menyalakan mesin-mesin industri.

  • Energi Bunyi

Energi bunyi terdapat pada segala jenis bunyi: orang bercakap-cakap, suara kicau burung, suara alat musik dan sebagainya. Betulkan bunyi adalah energi? Jika mendengar bunyi yang sangat keras, telinga kita terasa sakit. Hal itu menunjukkan bahwa bunyi memiliki energi. Energi itulah yang merambat dari satu tempat ke tempat yang lain.


Perubahan Bentuk Energi


  1. Energi dapat berubah bentuk, kira-kira seperti itulah yang dinyatakan dalam Hukum Kekekalan Energi. Energi yang kita gunakan untuk berlari atau berjalan disebut energi kinetik (gerak). Energi tersebut merupakan hasil reaksi kimia dalam tubuh kita. Oleh karena itu, makanan yang kita makan dikatakan memiliki energi kimia. Jadi, dalam hal ini energi kimia berubah menjadi energi kinetik. Demikian pula yang terjadi pada benda jatuh.
  2. Benda yang jatuh dari ketinggian tertentu, kecepatan awalnya nol. Semakin mendekati permukaan tanah, kecepatan benda jatuh semakin besar. Kecepatan maksimal benda jatuh adalah saat menyentuh permukaan tanah. Besarnya kecepatan maksimal tersebut tergantung pada ketinggian benda dari permukaan tanah. Dalam hal ini, dapat dianggap bahwa energi potensial benda berubah menjadi energi kinetik. Energi potensial adalah energi yang dimiliki oleh benda berkaitan dengan kedudukannya (tinggi tempat).

Dua contoh kasus diatas menunjukkan bahwa energi dapat berubah dari satu bentuk ke bentuk lainnya. Contoh perubahan bentuk energi lainnya adalah sebagai berikut:

  • Energi listrik berubah bentuk menjadi energi cahaya, contohnya arus listrik dapat digunakan untuk menyediakan lampu penerangan (bohlam atau neon).
  • Energi listrik berubah bentuk menjadi energi kalor (panas), contohnya arus listrik dapat digunakan untuk memasak atau menyetrika.
  • Energi gerak berubah menjadi energi bunyi, contohnya senar yang bergetar (gitar) dapat menghasilkan bunyi.
  • Energi kimia dapat berubah bentuk menjadi energi listrik, contohnya aki atau baterai dapat digunakan untuk menghidupkan tape recorder atau radio.

Biasanya, perubahan bentuk energi yang terjadi tidak berlangsung dari satu bentuk ke satu bentuk lainnya. Akan tetapi, berlangsung dari satu bentuk ke beberapa bentuk lain. Misalnya, pada bohlam yang sedang menyala terjadi perubahan bentuk energi listrik menjadi energi cahaya dan energi panas, pada dua buah logam yang digesekkan terjadi perubahan energi kinetik menjadi energi panas dan energi bunyi, pada tubuh kita terjadi perubahan energi kimia menjadi energi kinetik (aktivitas) dan energi panas.
09 May 2017

Pengertian, Satuan dan Macam-Macam Bentuk Energi

Pengertian, Satuan dan Macam-Macam Bentuk Energi. Pengertian Energi, Satuan Energi, dan Beragam Macam Jenis Bentuk Energi.

Pengertian Energi

Sumber: imavarmepumpar.se
Energi yakni kemampuan untuk melakukan satu tindakan atau pekerjaan (usaha). Kata “Energi” datang dari bahasa yunani yang maknanya yaitu “ergon” yang mempunyai arti kerja. Dalam melakukan sebuah hal kita selalu menggunakan serta memerlukan energi, baik secara sadar maupun tidak sadar, Umpamanya ketika kita jalan kita memerlukan energi.

Namun setiap kegiatan memerlukan energi dalam jumlah dan bentuk yang tidak sama. Energi tidak dapat dilihat namun pengaruhnya dapat dirasakan. Energi dapat berubah bentuk dari satu bentuk ke bentuk yang lain. Umpamanya pada setrika terjadi perubahan bentuk dari energi listrik jadi energi panas.

Satuan Energi 

Satuan Internasional untuk energi yakni Joule (J), satuan ini digunakan untuk menghormati james Presscot Joule dan percobaannya dalam persamaan mekanik panas. Satuan lain untuk energi yakni Kalori (Kal). Hubungan antara Joule dengan Kalori yakni sebagai berikut ini:

1 kalori = 4, 2 Joule atau 1 Joule = 0, 24 kalori 

Hubungan Joule dengan Satuan Internasional Dasar lain:

1 Joule = 1 Newton-Meter dan 1 Joule = 1kg m2 s-2 

Hukum Kekekalan Energi 

Sumber: eksplorasi.id
Bersumber pada Hukum Kekekalan Energi, dapat ditarik kesimpulan bila:

Energi Tidak dapat di buat maupun dimusnahkan. Energi hanya dapat dirubah bentuknya dari satu bentuk ke bentuk yang lain. Oleh sebab Itu Jumlah keseluruhnya energi dalam satu sistem hanya akan berubah ketika masuk atau keluarnya satu energi.

Bentuk-Bentuk Energi 

Dalam melakukan kehidupan sehari-hari, kenyataannya ada beragam macam jenis bentuk energi yang kita pakai. Dan, kita akan bahas tuntas, apa saja bentuk energi itu.

Energi Mekanik 

Energi mekanik yakni energi yang dimiliki satu benda karena karakter geraknya. Energi Mekanik dibagi lagi jadi dua, yaitu:

Energi Potensial

Sumber: annida-online.com
Energi potensial yaitu energi yang dimiliki satu benda karena posisi atau kedudukannya, artinya saat benda itu diam pada posisi spesifik. Beragam macam bentuk energi dapat dikelompokkan sebagai energi potensial, karena semua bentuk energi potensial dihubungkan dengan satu bentuk gaya yang bekerja pada keadaan fisik satu materi.

Umpamanya yakni ketika kita meregangkan karet, terjadi perubahan karakter fisik karena adanya gaya elastik, dan inilah yang disebut juga dengan energi potensial elastik. Secara Fisika Rumus Energi Potensial yakni sebagai berikut ini:

Ep = m x g x h 

Keterangan (Satuan):
Ep = Energi Potensial (Joule) m = Massa (kg) g = Gravitasi (m/s2) h = Ketinggian (m) 

Energi Kinetik

Sumber: benergi.com
Energi Kinetik yakni Energi yang dimiliki satu benda karena gerakan atau kelajuannya. Energi kinetik secara jelas dapat diambil kesimpulannya yakni sebagai satu kemampuan untuk melakukan usaha agar bisa menggerakkan benda dengan massa spesifik hingga mencapai satu kecepatan spesifik.

Semakin tinggi kecepatan satu benda semakin besar juga energi kinetiknya. Umpamanya yakni ketika satu mobil melaju, semakin kencang kecepatan mobil itu, semakin tambah juga energi kinetiknya. Secara Fisika Rumus Energi Kinetik Yakni Sebagai Berikut ini:

Ek = ½ x m x v2 

Keterangan (Satuan):
Ek = Energi Kinetik (Joule) m = Massa (kg) v = Kecepatan (m/s) 
Energi Mekanik = Energi Potensial + Energi Kinetik 

Energi Bunyi 

Sumber: lebih-unik.blogspot.co.id
Energi Bunyi yakni energi yang dihasilkan oleh getaran partikel-partikel udara di sekitar sumber bunyi. Sebenarnya setiap terjadinya getaran pada suatu benda jelas ada energi bunyi, namun tidak semua bunyi itu akan terdengar.

Semakin kuat getarannya, semakin besar juga energi bunyi yang dihasilkan. Umpamanya yakni ketika bermain gendang, semakin kuat gendang dipukul, otomatis semakin besar getarannya, dan semakin besar bunyi yang dihasilkan.

Energi Panas (Kalor) 

Sumber: williamtanzilblog.blogspot.co.id
Energi Panas yakni energi yang terjadi karena gerakan internal partikel penyusun dalam satu benda. Energi panas yaitu energi yang berpindah dari satu partikel yang bersuhu tinggi ke partikel bersuhu lebih rendah. Umpamanya ketika memanaskan air dengan api, suhu dari api akan berpindah ke air hingga membuat air dapat mendidih.

Energi Cahaya 

Energi Cahaya yakni Energi yang dihasilkan oleh gelombang elektromagnetik. Umpamanya yakni ketika cahaya dari lampu, semakin jauh kita dari sumber cahaya semakin sedikit efek cahaya itu pada pandangan.

Energi Kimia 

Energi Kimia yakni Energi yang dihasilkan karena adanya hubungan secara kimia dari reaksi kimia yang terjadi. Contoh Sederhananya yakni Makanan yang masuk ke dalam tubuh memiliki unsur kimia dan akan mengalami reaksi kimia agar dapat dipakai oleh tubuh, dan saat proses reaksi kimia juga terjadi energi kimia.

Energi Nuklir 

Energi Nuklir yakni Energi yang dihasilkan dari reaksi inti oleh bahan radioaktif. Energi ini dihasilkan oleh inti atom yang membelah atau dua inti atom yang menyatu. Pembelahan atau penyatuan inti atom akan menghasilkan energi yang sangat besar karena terjadi perubahan pada inti atom. Umpamanya yakni penggunaan bom nuklir.

Penggunaan dan Pemanfaatan Energi Dalam Kehidupan 

Sumber: gohijau.wordpress.com
  • Beragam macam energi dapat dipakai dalam kehidupan kita sehari-hari, dan berikut ini akan kami berikan contoh penggunaan energi dengan mengubahnya dari satu bentuk ke bentuk lain, antara lain:
  • Energi Kimia Jadi Energi Gerak (Mekanik) yakni Makanan yang kita makan di proses lewat reaksi kimia jadi sumber energi untuk melakukan aktivitas 
  • Energi Listrik Jadi Energi Panas yakni Penggunaan Setrika untuk menggosok pakaian. 
  • Energi Listrik Jadi Energi Bunyi yakni Penggunaan Bel untuk menghasilkan bunyi. 
  • Energi Listrik Jadi Energi Gerak (Mekanik yakni Penggunaan kipas angin. 
  • Energi Gerak (Mekanik) Jadi Energi Panas yakni Gesekkan dua benda secara terus menerus menghasilkan panas. 
  • Energi Cahaya Jadi Energi Kimia yakni Penggunaan cahaya matahari sebagai bahan dasar dalam proses fotosintesis oleh tumbuhan.
Dan itulah pembahasan kami mengenai Pengertian, Satuan dan Macam-Macam Bentuk Energi, untuk berbagai informasi yang kami sajikan pada kesempatan ini, harapannya semoga Postingan kali ini mengenai Energi di atas sedikitnya dapat menambah pengetahuan tersendiri bagi anda para pembaca.

Khususnya bagi anda yang saat ini sedang mencari sumber pengetahuan untuk lebih memahami Segala Hal tentang Energi. Terima kasih atas kunjungannya dan salam sukses untuk sahabat semuanya.

Referensi:
  1. softilmu.com
11 April 2017

Pengertian, Rumus, dan Satuan Daya

Pengertian, Rumus, dan Satuan Daya. Pengertian Daya, Rumus Daya, Satuan-Satuan yang digunakan dalam Pembahasan Daya. Persamaan Daya.

Pengertian Daya 

Sumber: berita.lampuutama.com
Daya yakni Laju Energi yang dihantarkan selama melakukan usaha dalam periode waktu spesifik. Satuan SI (Unit Internasional) untuk Daya yakni Joule/Sekon (J/s) = Watt (W).

Satuan Watt digunakan untuk penghormatan pada seorang ilmuan penemu mesin uap yang bernama James Watt.

Satuan daya yang lain yang sering kali digunakan yakni Daya Kuda atau Horse Power (hp), 1 hp = 746 Watt. Daya yaitu Besaran Skalar, karena Daya hanya memiliki nilai, tidak memiliki arah.

Rumus dan Satuan Daya 

Dalam Fisika, Daya disimbolkan dengan Persamaan Berikut ini:
  • P = W/t 
Dari Persamaan di atas kita bisa pula mengubah rumus daya jadi:
  • P = (F. s) /t 
  • P = F. v 
Hasil itu didapat karena Rumus Usaha (W) = Gaya (F) dikali Jarak (s) dibagi Waktu (t)
Dan Rumus Kecepatan (v) = jarak (s) dibagi waktu (t)

Keterangan: 
  • P = Daya (satuannya J/s atau Watt) 
  • W = Usaha (Satuannya Joule J) 
  • t = Waktu (satuannya sekon s) 
  • F = Gaya (Satuannya Newton N) 
  • s = Jarak (satuannya Meter m) 
  • v = Kecepatan (satuannya Meter/Sekon m/s) 
Nah bersumber pada persamaan fisika di atas, dapat di ambil rangkumannya bila semakin besar laju usaha, semakin besar juga laju daya. Sedangkan bila semakin lama waktunya, laju daya akan semakin kecil.

Perbedaan Daya dengan Energi 

Sumber: bukupedia.net
Banyak yang menyamakan pengertian energi dan Daya namun sebenarnya mereka itu tidak sama. Kemampuan mengerjakan aktivitas tidak hanya dibatasi oleh total energi yang dimiliki oleh tubuh, tetapi juga dibatasi oleh daya kapabilitas tubuh.

Umpamanya Seseorang dapat jalan mengitari lapangan sampai total dayanya habis, dan dia bisa melakukan sampai 30 putaran. Namun ketika esok hari dia coba lakukan putaran lapangan dengan cara berlari, dan kenyataannya ia hanya bisa merampungkan 20 putaran.

Hal semacam ini terjadi karena tubuh orang itu dibatasi oleh daya yang dimilikinya ketika berlari, yaitu laju energi kimia yang dimiliki untuk mengubahnya jadi energi mekanik.

Ketidaksamaan Daya dengan Usaha

Sumber: gradeshomecleaning.com
Daya dan usaha yaitu ide konsep fisika yang sering kali dibicarakan secara berbarengan dalam permasalahan mekanika. Ketidaksamaan Daya dengan Usaha sebenarnya dapat dikaji lewat pengertian mereka yang tidak sama. Yaitu:

Daya yakni Laju Energi yang dihantarkan selama melakukan usaha dalam periode waktu spesifik.
Usaha yakni Jumlah Daya yang dihantarkan oleh gaya dalam jarak spesifik.

Perbedaan mendasar antara Daya dan Usaha yakni daya yaitu Laju energi, sedangkan Usaha yaitu jumlah energi yang dihantarkan. Perbedaan yang lain yakni Usaha diukur dalam Joule sedangkan Daya diukur dalam Watt.

Contoh Daya dalam Kehidupan Sehari-hari

Sumber: mynewblogwansey.blogspot.co.id
Biasanya ukuran-ukuran alat-alat listrik dinyatakan dengan daya dan tegangannya. Misalnya lampu pijar mempunyai ukuran 50 watt, 220 volt, setrika listrik 300 watt, 220 volt dan sebagainya.

Lampu pijar 50 W, 220 V dapat menyala pada daya maksimum atau di bawahnya, daya maksimum lampu itu 50 W terwujud ketika tegangannya 220 V.

Apabila lampu 50 W, 220 V dipasang pada tegangan di bawah 220 V, lampu menyala pada daya di bawah 50 W, apabila dipasang pada tegangan di atas 220 V, lampu menyala beberapa sekonkemudian mati.

Lampu 50 watt tiap sekon mengubah 50 joule energi listrik jadi energi cahaya. Oleh karenanya bola lampu 75 watt lebih jelas dari bola lampu 50 watt jika dipasang pada tegangan yang sesuai karena energi cahaya pada lampu 75 watt semakin besar dari energi cahaya pada lampu 50 watt.

Pesawat tv dapat juga dinyatakan dengan dayanya. Misalnya ada pesawat tv yang mempunyai daya 20 watt, yang mempunyai arti tiap detik mengubah energi listrik sebesar 20 joule jadi energi cahaya dan energi bunyi serta energi kalor.

Seterika listrik mempunyai daya 500 watt artinya energi panas yang dihasilkan seterika itu tiap detik 500 joule.

Karena daya mengatakan energi per satuan waktu, energi dapat dinyatakan dengan daya kali waktu (W= P. t). Energi listrik di beberapa tempat tinggal sering kali dinyatakan dalam kWh.

Dalam sistem cgs satuan erg/detik sebagai unit daya yang tidak perlu diberi nama lain. Motor untuk pompa air, motor mobil dengan bahan bakar solar maupun bensin dayanya dinyatakan dengan sekian HP atau sekian PK (HP=hourse power, PK = paardekracht), dalam bahasa Indonesia yakni daya kuda.

Contoh: 

Mesin Honda berkekuatan 5 PK artinya mesin itu mempunyai daya 5 × 736 watt atau 3 kali kapabilitas kuda. Mesin ini menghasilkan tenaga 3680 joule tiap sekon.

Unit HP atau PK pertama kalinya dikemukakan oleh penemu mesin uap James Watt, berkebangsaan Inggris. Unit PK dan HP tidak digunakan dalam ilmu serta pengetahuan, tetapi dalam perdagangan dan teknik masih tetap digunakan.

Apabila diperhatikan, dalam kehidupan sehari-hari, banyak beberapa peristiwa yang ada hubungan dengan daya. Berikut ini yaitu contoh aplikasi daya dalam kehidupan sehari-hari.

Apabila dua lampu sejenis masing-masing 40 watt dan 10 watt dinyalakan menggunakan sumber arus yang sama, lampu 40 watt akan menyala lebih jelas dari pada lampu 10 watt. Hal semacam ini lantaran lampu 40 watt dapat mengubah energi listrik ke dalam energi cahaya lebih cepat dari pada lampu 10 watt.

Ari dan Wibowo memiliki berat tubuh sama. Dengan hal tersebut, keduanya di anggap memiliki energi yang sama. Ketika keduanya berlomba lari 100 m, kenyataannya yang lebih dulu menggapai garis finish yakni Ari. Dengan hal itu, Ari mempunyai daya lebih besar dari pada Wibowo.

Dan itulah pembahasan kami mengenai Pengertian, Rumus, dan Satuan Daya, untuk berbagai informasi yang kami sajikan pada kesempatan ini, harapannya semoga Postingan kali ini mengenai Pengertian, Rumus, dan Satuan Daya di atas sedikitnya dapat menambah pengetahuan tersendiri bagi anda para pembaca.

Khususnya bagi anda yang saat ini sedang mencari sumber pengetahuan untuk lebih memahami Segala Hal tentang Daya. Terima kasih atas kunjungannya dan salam sukses untuk sahabat semuanya.

Referensi:
  1. softilmu.com
17 September 2014

Sumber Energi Listrik

Saat ini hampir semua peralatan yang digunakan manusia bekerja menggunakan enerji listerik. Lampu, tivi, kipas angin, lemari es, telepon genggam, dan penanak nasi merupakan beberapa contoh peralatan rumah tangga yang menggunakan enerji listerik. Selain peralatan rumah tangga, banyak lagi peralatan lain yang menggunakan enerji listerik, misalnya komputer, gergaji listerik, bahkan kereta api listerik.

Dari mana kita mendapatkan sumber energi listerik? Salah satunya adalah dari batre. Peralatan listerik berukuran kecil biasanya menggunakan batre. Benda-benda tersebut misalnya telepon genggam, lampu senter, mobil mainan, dan jam dinding. Batre menyimpan sejumlah enerji listerik yang akan habis setelah digunakan dalam beberapa waktu tertentu. Selanjutnya, batre tersebut harus diganti atau diisi ulang.
No.
Kosakata Tidak Baku
Kosakata Tidak Baku
1.
Listerik
Listrik
2.
tivi
teve
3.
enerji
energi
4.
batre
batere
Sumber Energi Listrik
  1. Baterai. Pada ujung baterai terdapat dua buah kutub yaitu kutub positif dan negatif. Jika bungkus bagian luar baterai kita buka akan terlihat lapisan seng, lapisan seng ini berfungsi sebagai kutub negatif. Benda yang berfungsi sebagai kutub positif adalah batang arang yang terdapat di bagian tengah. Batang karbon ini dikelilingi serbuk hitam yang merupakan elektrolit. Elektrolit adalah suatu zat yang larut atau terurai ke dalam bentuk ion-ion dan selanjutnya larutan menjadi konduktor elektrik. Karena elektrolit baterai berupa serbuk, baterai juga sering disebut elemen kering. Pada permukaan luar baterai biasanya terdapat tulisan, misalnya 1,5 volt. Artinya, baterai tersebut bertegangan listrik sebesar 1,5 volt. Volt merupakan satuan yang digunakan untuk menyatakan tegangan listrik.
  2. Akkumulator (Aki). Aki disebut juga elemen basah karena elektrolitnya berupa zat cair(asam sulfat). Aki temasuk sel sekunder, karena selain menghasilkan arus listrik, aki juga dapat diisi arus listrik kembali.  Bagian dalam aki terdiri dari lempengan timbal dan timbal peroksida yang dicelupkan ke dalam larutan asam sulfat. Lempengan timbal tersebut terdiri dari pelat Positif dan pelat Negatif, untuk pelat Positif dibuat dari Timbal Peroksida, Sedangkan pelat Negatif hanya dibuat dari logam timbal. Antara pelat positif dan pelat negetif diberi pemisah supaya tidak bersinggungan yang dapat mengakibatkan hubungan arus pendek. Timbal dan timbal peroksida ini bereaksi dengan asam sulfat, hasil reaksi kimia tersebut menghasilkan listrik.
  3. Dinamo dan Generator. Dinamo biasanya digunakan untuk menyalakan lampu pada sepeda. Dinamo terdiri dari kumparan yang ditempatkan di tengah medan magnet, ketika kepala dinamo(bagian yang menempel pada ban sepeda) berputar kumparan tersebut juga ikut berputar. Perputaran kumparan di dalam medan magnet menghasilkan energi listrik. Kecepatan perputaran roda sepeda mempengaruhi besar arus listrik yang dihasilkan. Semakin cepat roda berputar semakin besar energi listrik yang dihasilkan. Jadi dinamo mengubah energi gerak menjadi energi listrik. 
  4. Sumber energi listrik yang mengubah energi gerak menjadi energi listrik yang lain adalah generator. Pada generator cara kerjanya hampir sama dengan dinamo, namun energi listrik yang dihasilkan lebih besar. Generator yang besar biasanya digerakkan oleh kincir besar atau turbin. Turbin diputar dengan memanfaatkan tenaga air dari bendungan atau dam.
  5. Sel Surya. Matahari merupakan sumber energi yang sangat besar. Energi matahari berupa energi panas dan cahaya. Seiring perkembangan teknologi, energi matahari dapat diubah menjadi energi listrik. Alat yang mampu mengubahnya disebut sel surya. Sel surya dapat dipasang di atap rumah. Sel surya akan menangkap energi matahari dan menyimpannya dalam elemen listrik. Selanjutnya, energi tersebut dapat digunakan untuk menyalakan peralatan listrik. Selain itu, sel surya juga digunakan pada kalkulator dan mobil tenaga surya. Stasiun-stasiun luar angkasa juga memanfaatkan energi matahari.
  6. Nuklir. Nuklir merupakan sumber energi yang sangat besar. Energi nuklir dihasilkan dari reaksi atom di dalam sebuah reaktor. Nuklir dapat digunakan sebagai bahan pembuat bom atom. Selain itu, nuklir dapat digunakan sebagai pembangkit listrik. Penggunaan nuklir sebagai sumber energi listrik tidak menimbulkan polusi. Hanya saja, kebocoran nuklir perlu diwaspadai. Kebocoran dapat menyebabkan cacat tubuh, bahkan kematian.
Rangkaian Listrik
  • Rangkaian Seri
Rangkaian seri terbentuk jika dua buah bola lampu atau lebih dihubungkan secara berderet. Demikian pula dengan sumber tegangan juga dihubungkan secara berderet. Pada rangkaian seri apabila salah satu lampu diputuskan ( mati ) maka lampu yang lain juga juga akan mati.
  • Rangkaian Paralel
Rangkaian paralel terbentuk jika dua buah bola lampu atau lebih dihubungkan secara berjajar. Kutub lampu sejenis dihubungkan ke kutub baterai yang sama. Pada rangkaian paralel jika salah satu lampu diputuskan ( mati ), lampu yang lainya tetap menyala. Hal ini terjadi karena lampu yang lain masih terhubung dengan sumber arus listrik
  • Rangkaian Campuran
Rangkaian campuran merupakan gabungan dari rangkaian seri dan rangkaian paralel. Keuntungan rangkaian seri adalah hemat kabel, dan rangkaiannya sederhana sehingga membuatnya pun mudah. Kerugiannya pada saat satu lampu mati, yang lain juga mati. Begitu juga pada nyala lampunya, tidak terang (redup). Energinya juga boros, karena digambarkan 1R+1R+1R. Sementara rangkaian paralel adalah 1/R+1/R+1/R. Sementara keuntungan dan kerugian rangkaian paralel adalah kebalikan dari kerugian dan keuntungan seri. Sedang yang disebut rangkaian rumit adalah rangkaian gabungan antara paralel dan seri. Contohnya adalah lampu di rumah.

Selain lampu listrik, banyak benda lain menggunakan energi listrik, misalnya lemari es, mesin cuci, hingga mesin-mesin yang digunakan di pabrik-pabrik besar. Di antara benda-benda yang menggunakan energi listrik tersebut, ada benda-benda yang harus diimpor, misalnya berbagai mesin di pabrik-pabrik besar. Kebanyakan benda berteknologi tinggi masih harus kita impor dari luar negeri karena kita belum dapat memproduksinya sendiri. Kelak, jika kemampuan sumber daya manusia Indonesia meningkat, tentu kita dapat memproduksi benda-benda itu juga. Bahkan, saat itu kita juga dapat mengekspornya ke negara lain.
Apa yang dimaksud impor?
Impor adalah proses pembelian barang atau jasa asing dari suatu negara ke negara lain. Impor barang secara besar umumnya membutuhkan campur tangan dari bea cukai di negara pengirim maupun penerima. Impor adalah bagian penting dari perdagangan internasional.
Apa pengertian ekspor?
Ekspor adalah penjualan barang ke luar negeri dengan menggunakan sistem pembayaran, kualitas, kuantitas dan syarat penjualan lainnya yang telah disetujui oleh pihak eksportir dan importir. Proses ekspor pada umumnya adalah tindakan untuk mengeluarkan barang atau komoditas dari dalam negeri untuk memasukannya ke negara lain.
10 May 2017

Gerak Harmonik Sederhana

Gerak Harmonik Sederhana. Pengertian Gerak Harmonik Sederhana, Jenis Gerak Harmonik Sederhana, dan Penjelasan Lengkap Mengenai Gerak Harmonik Sederhana (GHS).

Pengertian Gerak Harmonik Sederhana

Sumber: fisikareview.wordpress.com
Satu diantara bentuk gerakan yang paling sederhana disebut juga dengan gerak harmonik simpel (GHS) atau simple harmonic oscillation (SHO).

Mengapa diberi nama Harmonik sederhana? Sesuai sama pengertian perkataannya yaitu harmonik yang artinya bentuk/pola yang selalu berulang pada saat tertentu dan sederhana diartikan bahwa anggapan tidak ada gaya disipasi, sampai amplitudo dan daya tetap/abadi.

Gerak Harmonik Sederhana yakni gerak periodik bolak balik dengan lintasan yang ditempuh terus-menerus sama (tetap) berpusat pada satu titik (titik setimbang).

Gerak Harmonik Sederhana mempunyai kesamaan gerak berupa sinusoidal dan digunakan untuk mengulas satu gerak periodik spesifik. Gerak harmonik sederhana yang dapat ditemui dalam kehidupan sehari-hari yakni getaran benda pada pegas dan getaran benda pada ayunan sederhana.

Jenis Gerak Harmonik Sederhana 

Gerak Harmonik Sederhana dapat dibedakan jadi 2 bentuk, yaitu:

Gerak Harmonik Sederhana Linier, gerakannya ada pada satu garis lurus vertikal maupun horizintal. Umpamanya penghisap dalam silinder gas, gerak osilasi air raksa/air dalam pipa U, gerak horizontal/vertikal dari pegas (pegas pada mobil), dan sebagainya.

Gerak Harmonik Sederhana Angular, gerakannya mengayun membentuk pola setengah lingkaran ataupun bisa saja perputaran. Contohnya gerak bandul/bandul fisis (bandul jam), osilasi ayunan torsi, dan sebagainya.

Besaran Gerak Harmonik Sederhana 

Besaran fisika pada Gerak Harmonik Sederhana pada pegas pada dasarnya sama saja dengan ayunan sederhana, yakni adanya periode, frekuensi dan amplitudo. Jarak x dari posisi setimbang disebut juga dengan simpangan.

Simpangan maksimum dengan kata lain jarak terbesar dari titik setimbang disebut juga dengan amplitudo (A). Satu getaran Gerak Harmonik Sederhana pada pegas yakni gerak bolak balik lengkap dari titik awal dan kembali pada titik yang sama.

Perpindahan 

Bola dari mulai sumbu x pada x = +A dan bergerak menempuh sudut θ dalam kurun waktu t. Karena gerak ini yaitu gerak melingkar teratur, bola bergerak dengan laju sudut konstan w (dalam rad/s). Oleh karena itu dapat dinyatakan, θ = wt. Perpindahan bayangan pada arah x yakni proyeksi jari-jari lingkaran A pada sumbu

Periode (T) 

Waktu yang dibutuhkan oleh benda yang bergerak harmonik sederhana untuk menempuh satu putaran penuh disebut juga dengan perioda. Besar perioda tergantung pada laju sudut bola ω. Semaik besar sudut, semakin singkat waktu yang diperlukan untuk menempuh satu putaran.
Hubungan antara ω serta T didapat dari ω = Δθ/Δt, hingga:

Frekuensi (f)

Tidak hanya periode, ada juga frekuensi dengan kata lain banyak getaran yang dilakukan oleh benda sepanjang satu detik. Frekuensi memperlihatkan seberapa “cepat” Gerak Harmonik Sederhana berjalan, dalam grafik y-t frekuensi yang semakin besar diperlihatkan dengan grafik sinusoidal yang lebih rapat.

Pegas: 

Bandul: 

Amplitudo (A) 

Amplitudo yakni perpindahan maksimum dari titik kesetimbangan.

Satu pegas apabila ditarik atau ditekan dari posisi normalnya akan melawan dengan gaya khusus untuk menormalkan dirinya. Gaya ini disebut juga dengan gaya pemulih (restoring force), yang besarnya sebanding dengan seberapa besar kita menarik/menekan pegas itu dan arahnya berlawanan dengan arah tarikan kita. Hubungan ini dirumuskan oleh Robert Hooke:

Simpangan Gerak Harmonik Sederhana 

Simpangan gerak harmonik pada suatu titik yaitu jarak titik itu ke titik seimbang.
Atau
Di mana:

Y = simpangan gerak harmonik (m)
A = amplitudo (m)
ω = kecepatan sudut (rad/s)
T = periode getaran (s)
F = frekuensi getaran (Hz)
t = waktu tempuh (s)

Kecepatan Gerak Harmonik Sederhana 

Tidak sama juga dengan simpangan yang menunujukkan posisi satu benda, kecepatan yaitu turunan pertama dari posisi.
Nilai kecepatan v maksimum ketika cos ωt = 1, hingga kecepatan maksimumnya yakni:
Lalu, kecepatannya di sembarang posisi y atau hubungan kecepatan dengan simpangan harmonik yakni:
Percepatan Gerak Harmonik Sederhana

Percepatan dapat dicari dengan mengingat bahwa percepatan yakni turunan pertama kecepatan terhadap waktu.
Nilai percepatan (a) akan maksimum pada saat sin ωt = 1, hingga percepatan maksimumnya yakni:
Hubungan percepatan dengan simpangan harmonik:

Energi Pada Gerak Harmonik Sederhana 

Gerak Harmonik Sederhana tidak hanya memiliki beberapa kesamaan, tetapi juga energi-energi yang menyertainya. Apa saja energi yang dimaksud itu?

Energi Kinetik 

Energi kinetik yakni Energi yang dimiliki oleh benda yang melakukan gerak harmonik sederhana karena kecepatan geraknya.
Energi kinetik maksimum pada gerak harmonik dicapai ketika ada di titik setimbang. Sedangkan daya kinetik minimal dicapai ketika ada di titik balik.

Energi Potensial 

Besarnya Energi potensial yakni daya yang dimiliki gerak harmonik sederhana karena simpangannya. Secara matematis Energi potensial yang dimiliki gerak harmonik.
Energi maksimumnya terjadi pada gerak yang dicapai ketika ada di titik baliknya.

Energi Mekanik 

Energi ini yaitu hasil penjumlahan Energi kinetik serta potensial.
Bersumber pada persamaannya, Energi mekanik satu benda yang bergerak harmonik tidak tergantung waktu serta tempat. Jadi, Energi mekanik satu buah benda yang bergerak dimana saja besarnya sama.

Seluruh benda yang bergetar di mana gaya pemulih F berbanding lurus dengan negatif simpangan (F = -kx), benda itu bisa dan dapat dikatakan melakukan gerak harmonik sederhana (GHS) dengan kata lain Osilator Harmonik Sederhana (OHS).

Penerapan Gerak Harmonik Sederhana 

Pengaplikasian gerak harmonik cukup banyak dalam kehidupan berbentuk alat bantu manusia. Berikut ini beberapa penerapannya:

Shock Absorber (pegas) 

Peredam kejut pada mobil memiliki komponen pegas yang tersambung pada piston dan dipasangkan dekat roda kendaraan. Hal semacam ini membantu untuk mengatur atau meredam guncangan pada roda.

Jam bandul 

Karena tidak menggunakan baterai, jam bandul bekerja dengan memakai tenaga gravitasi atau pegas. Baik jam pegas atau jam rantai memiliki mekanisme pemutar dan ada roda gigi yang berputar dan menggerakkan jarum jam seperti bandul yang bergerak kekiri serta kekanan.

Pita elastis 

Berkalu seperti pegasmirip dengan sistem massa pegas. Keduanya akan bergetar dari titik setimbangnya hingga gaya gesekan mengeluarkan daya redam. Struktur karet membuatnya memiliki Energi potensial elastis yang tinggi sampai dapat diaplikasikan ke penggunaan kabel bungee jumping.

Trampolin 

Bahan trampolin yaitu pegas yang tingkat elastisitasnya tinggi. Ditarik dari posisi setimbang, pegas mendapat Energi potensial elastisnya. Energi ini juga yang mendorong seseorang memantul kembali ke atas.

Garpu tala 

Perbedaan ukuran garpu tala mengakibatkannya menghasilkan titik nada yang tidak sama juga. Makin besar massa garpu tala semakin rendah frekuensi osilasi dan makin rendah juga nada yang dihasilkan.

Jam mekanik 

Pada roda keseimbangan dari satu buah jam mekanik memiliki komponen pegas yang akan memberi satu torsi pemulih yang sebanding dengan perpindahan sudut dan posisi kesetimbangan. Gerak ini yaitu gerak harmonik sederhana bentuk angular.

Contoh Soal Gerak Harmonik Sederhana 

Sebuah benda melakukan gerak harmonik dengan amplitudo 2A. Pada saat kecepatannya sama juga dengan seperempat kecepatan maksimum, tentukan simpangannya!
Waktu Energi kinetik benda bergetar sesuai dan sama juga dengan Energi potensialnya...
Sebuah benda dengan massa 4 gr digetarkan dengan y = 0,05 sin 300t dengan satuan internasional. Tentukan kecepatan dan percepatannya waktu t = 2 s.
Apabila massa beban yang digantung pada ujung bawah pegas 3 kg, periode getarannya 7 sekon. Apabila massa beban dilipat gandakan jadi 9 kg, tentukan periode getarannya!
Dan itulah pembahasan kami mengenai Gerak Harmonik Sederhana, untuk berbagai informasi yang kami sajikan pada kesempatan ini, harapannya semoga Postingan kali ini mengenai Gerak Harmonik Sederhana di atas sedikitnya dapat menambah pengetahuan tersendiri bagi anda para pembaca.

Khususnya bagi anda yang saat ini sedang mencari sumber pengetahuan untuk lebih memahami Segala Hal tentang Gerak Harmonik Sederhana. Terima kasih atas kunjungannya dan salam sukses untuk sahabat semuanya.

Referensi:
  1. softilmu.com
27 March 2017

Pengertian, Komponen, dan Macam–Macam Ekosistem

Pengertian, Komponen, dan Macam–Macam Ekosistem. Pengertian Ekosistem, Komponen dari Sebuah Ekosistem, Macam-Macam Ekosistem, Ekosistem Darat, Ekosistem Laut. Istilah-Istilah dalam Ekosistem, Fungsi dari sebuah Ekosistem.

Pengertian Ekosistem 

Sumber: blingurah.com
Dalam sebuah daerah, lingkungan atau lokasi, umpamanya hutan, kolam, danau, waduk serta lain sebagainya sudah terjadinya hubungan antar komponen biotik (makhluk hidup) serta komponen abiotik (makhluk tidak hidup).

Misalnya satu tumbuhan membutuhkan tanah, unsur hara, sinar serta air untuk tumbuh. Lantas tumbuhan ini lantas dapat jadi sumber makanan untuk makhluk hidup yang lain seperti hewan ataupun manusia serta demikian selanjutnya.

Momen yang di atas tadi adalah sebuah system ekologi yang terbentuk oleh hubungan timbal balik antara makhluk hidup dengan lingkungan serta umumnya kita kenal dengan ekosistem.

Sebuah system ini terbagi dalam beragam komponen yang sama-sama melengkapi serta bekerja terus-menerus serta teratur sebagai satu kesatuan yang utuh.

Sedangkan ekologi yaitu pengetahuan sains yang mempelajari hubungan timbal balik antara organisme yang satu dengan tempat hidup atau habitatnya.

Jadi dapat di ambil kesimpulan kalau ekosistem yaitu sebuah tatanan kesatuan secara utuh serta menyeluruh antara seluruh komponen lingkungan hidup yang sama-sama berhubungan serta melengkapi hingga terbentuk kesatuan yang teratur.

Kesatuan yang utuh serta teratur ini ada pada bingkai keseimbangan yang miliki sifat dinamis. Arti dinamis di sini yaitu bisa saja sewaktu-waktu terjadi perubahan, baik besar ataupun kecil yang dikarenakan oleh tangan manusia.

Komponen Ekosistem 

Sumber: wikipedia.org
Ekosistem dapat berbagai jenis bentuknya sesuai sama bentangan maupun hamparan tempat ekosistem berada. Misalnya ekosistem hutan, rawa-rawa, waduk, danau, hutan hujan tropis serta lain sebagainya.

Walau demikian bila diurutkan bersumber pada komponen terbagi dalam komponen fisik atau tidak hidup (abiotik) serta hayati atau hidup (biotik).

Komponen fisik atau tidak hidup misalnya udara, angin, cahaya, air, tanah, curah hujan serta lain sebagainya. Seluruh bentuk materi ini berupa daya serta materi dalam ruang lingkup ekosistem.

Komponen abiotik atau hidup dilihat dari susunan trofiknya, terbagi dalam beberapa status sosial atau tingkatan, yaitu produsesm customer serta pengurai. Sedangkan dilihat dari manfaatnya terbagi dalam dua komponen besar yakni komponen autotrof serta heterotrof.

Produsen 

Produsen adalah sebuah bentuk organisme atau makhluk hidup yang dapat membentuk serta membuat makanannya sendiri dari beragam zat organik dengan lewat proses fotosintesis serta klorofil.

Bentuk organisme ini disebut dengan autotrof sebab dapat dan mampu membentuk serta membuat makanannya sendiri dan dapat juga membantu keperluan makhluk hidup yang lain.

Konsumen 

Konsumen adalah beberapa kumpulan atau beberapa kelompok makhluk hidup yang mengonsumsi produsen serta hewan yang lain. Bentuk kelompok ini tidak dapat membuat makanannya sendiri dari beberapa bahan anorganik. Hingga dia amat tergantung pada organisme produsen.

Komponen ini di kenal dengan heterotrof. Di dalam konsumen sendiri terdiri lagi beberapa tingkatan. Yaitu hewan yang mengonsumsi organisme produsen disebut dengan konsumen primer. Bentuk hewan ini terbagi dalam herbivora di dalam susunan trofik menempati tingkatan trofik kedua.

Lantas konsumen yang mengonsumsi organisme herbivora disebut dengan konsumen sekunder yang terbagi dalam hewan karnivora ataupun omnivora. Serta konsumen sekunder ini masuk ke dalam tingkatan trofik ketiga.

Biasanya hubungan antarkomponen biotik dalam sebuah system ekosistem umumnya saling terkait dalam system rantai makanan. Rantai makanan yang saling terkait akan membuat jaringan kehidupan yang baru.

Pengurai 

Pengurai adalah sebuah bentuk organisme yang tugasnya menguraikan sisa-sisa makhluk hidup yang lain yang sudah mati jadi beberapa zat organik. Lantas zat ini akan disimpan di dalam tanah lantas digunakan oleh tumbuhan sebagai bahan makanan (penyubur tanaman).

Contoh organisme pengurai yaitu bakteri serta jamur. Kehadiran organisme pengurai amat dibutuhkan untuk makhluk hidup.

Aliran Materi Serta Energi Dalam Ekosistem 

Produsen bersamaan dengan konsumen membuat rangkai makanan lantas dibantu dengan pengurai hingga terbentuklah daur materi. Satu ekosistem akan terbentuk dengan baik bila di dalamnya ada aliran materi serta energi.

Aliran materi akan mengalir dari mata rantai satu ke mata rantai lain dalam sebuah rantai makanan. Materi yaitu segala suatu hal yang mempunyai massa serta menempati ruang.

Massa di sini barmakna berat serta dapat ditimbang. Dalam momen makan memakan, maka akan terjadi perpindahan materi dari organisme yang dikonsumsi menuju ke organisme yang mengonsumsi.

Makanan yang dikonsumsi oleh organisme memiliki kandungan energi untuk menjalani kegiatan. Bersamaan dengan itu aliran materi juga ikut terbawa begitu halnya aliran energi.

Aliran energi yaitu rentetan berurut dari perpindahan bentuk energi ke bentuk energi yang lain serta diawali dari cahaya matahari sampai ke produsen, konsumen tingkat tinggi hingga ke pengurai (saprina) di dalam tanah.

Siklus atau daur hidup ini berlangsung dalam tatanan ekosistem. Jadi, daya tidak akan hilang akan tetapi akan beralih ke bentuk energi yang lain. Bila dalam pengetahuan fisika disebut dengan termodinamika. Yaitu hukum kekekalan energi.

Hukum Termodinamika I menyebutkan kalau energi dapat dirubah dari bentuk energi yang satu ke bentuk energi yang lain tetapi tidak bisa di ciptakan serta dimusnahkan.

Tetapi, Hukum Termodinamika II menyatakan kalau tidak ada sebuah proses pengubahan bentuk energi yang berjalan secara prima. Serta proses pengubahan ini senantiasa meninggalkan sisa yang tidak terpakai pada proses itu.

Jadi sisa energi yang tidak terpakai ini disebut dengan entropi. Atau dalam dunia industri disebut juga dengan limbah atau hasil pembuangan pabrik.

Sumber energi itu banyak macamnya. Tetapi sumber energi paling utama di dunia yaitu matahari. Lantaran semua komponen kehidupan memmbutuhkan serta memakai matahari dalam proses hidupnya.

Umpamanya saja tumbuhan memakai sinar matahari untuk proses fotosintesis serta organisme lain memerlukan cahaya matahari untuk merubah zat anorganik jadi organik atau disebut juga dengan kemoautotrof.

Interaksi Komponen Abiotik Dengan Komponen Biotik 

Dalam persoalan ini komponen biotik sebagian besar di pengaruhi oleh komponen abiotik. Contoh, sebatang tumbuhan amat tergantung dengan kehadiran serta petumbuhannya dari komponen abiotik, seumpamanya tanah, air, udara, cahaya.

Mengenai beberapa bentuk tanaman cuma dapat tumbuh serta berkembang hanya di tanah tertentu saja. Demikian halnya perihal persebaran tanaman di pengaruhi juga oleh aspek cuaca serta iklim. Umpamanya, tanaman kelapa bisa tumbuh subur serta berbuah lebat cuma di daerah pesisir pantai akan tetapi tidak untuk daerah pegunungan.

Interaksi Antarorganisme 

Pada intinya tiap organis berhubungan dengan antarorganisme maupun dengan bentuk lain. Tetapi interaksi antarorganisme ini bisa dibedakan jadi 5 diantaranya:

Netral 

Netral yaitu hubungan atau hubungan tidak sama-sama mengganggu antarorganisme dalam satu habitat yang sama serta miliki sifat menguntungkan dan tidak merugikan kedua belah pihak.

Predasi 

Predasi yaitu interaksi atau hubungan antarorganisme mangsa serta pemangsa (predator). Artinya seekor pemangsa dalam soal ini hewan tidak dapat hidup jika tidak ada yang dimangsa.

Parasitisme 

Parasitime yaitu hubungan atau hubungan antarorganisme yang berbeda spesies serta miliki sifat merugikan dari masing-masing spesies yang berbeda.

Komensalisme 

Komensalisme yaitu interaksi atau hubungan pada dua organisme yang masing-masing berbeda spesies, spesies yang pertama diuntungkan serta spesies yang lain tidak dirugikan.

Mutualisme 

Mutualisme yaitu interaksi atau hubungan antar dua organisme atau lebih yang berbeda bentuk atau spesies serta sama-sama menguntungkan antar kedua belah pihak.

Interaksi Antarpopulasi 

Biasanya interaksi antarpopulasi terjadi cuma pada populasi yang satu dengan yang lain. Dan bersifat alelopati ataupun kompetisi. Adapun interaksi alelopti yaitu hubungan yang terjadi antar populasi yang terjadi jika populasi yang pertama menghasilkan zat yang dapat menghalangi tumbunya populasi lain.

Interaksi Antarkomunitas 

Komunitas adalah kumpulan populasi yang berbeda serta sama-sama berhubungan di dalam sebuah lokasi yang sama. Contoh, daerah padang rumput yang ditempati oleh hewan pemakan rumput yakni kuda, banteng, kelinci, rusa serta lain sebagainya.

Beberapa Jenis Ekosistem (Bioma) 

Nama lain dari ekosistem yaitu bioma. Meskipun kelihatannya bioma adalah bagian dari ekosistem akan tetapi dalam dunia biologi kerapkali juga menyamai ekosistem dengan bioma. Bioma yaitu komune satuan di dalam ekosistem sebagai hasil interaksi atau hubungan iklim regional atau lokasi dengan biota (makhluk hidup) serta substratnya.

Jadi iklim maupun cuaca amat menentukan bentuk biota yang hidup di sebuah wilayah atau lokasi itu. Umpamanya, lokasi padang rumput tumbuh di daerah yang mempunyai curah hujan yang stabil.

Bersumber pada jenis atau macam-macamnya ekosistem dibedakan jadi 2 bentuk yaitu ekosistem darat serta ekosistem perairan (ekosistem darat serta ekosistem air laut).

Ekosistem Darat 

Ekosistem darat yaitu lingkungan atau lokasi fisik yang berbentuk daratan. Dalam ekosistem ada beberapa kumpulan atau beberapa bioma. Seperti yang sudah dijelaskan di atas bioma sama dengan ekosistem, oleh karena itu kita mengistilahkan beberapa ekosistem darat dengan bioma, salah satunya:

Bioma Gurun 
Sumber: satujam.com
Bioma gurun yaitu sebuah bentuk ekosistem yang cuma ada pada daerah dengan curah hujan kurang dari 25 cm/tahun serta mempunyai suhu yang tinggi pada siang hari yaitu 45 derajat C serta suhu rendah saat malam hari yaitu 0 derajat C. Bioma gurun ada di sepanjang garis balik utara serta selatan dengan keadaan udara yang mengalami subsidensi (turun), hingga terjadi penempatan udara.

Bioma Padang Rumput 
Sumber: renunganhariankristen.net
Bioma Padang Rumput yaitu bentuk ekosistem yang mempunyai curah hujan terbatas yaitu 25 cm – 30 cm/tahun. Hingga bentuk ekosistem ini tidak dapat membentuk hutan. Bioma padang rumput bisa ditemui di daerah atau lokasi tropis serta sub tropis. Misalnya negara-negara Asia Tenggara serta beberapa negara Asia Utara.

Bioma Hutan Basah 
Sumber: widrializa.blogspot.co.id
Bioma Hutan Basah yaitu bentuk ekosistem dengan curah hujan yang cukup lebat atau tinggi yaitu 200 cm – 225 cm/tahun. Jenis ekosistem ini dapat dijumpai di lokasi tropis serta sub tropis.

Bioma Hutan Gugur 
Sumber: geographyeducation.wordpress.com
Bioma Hutan Gugur yaitu bentuk ekosistem yang mempunyai iklim sedang atau lokasi yang beriklim 4 musim. Ciri bioma hutan gugur yaitu mempunyai curah hujan yang merata setiap tahun, pohon yang tumbuh tidak serapat dengan tumbuhan di bioma hutan basah.

Bioma Taiga 
Sumber: emaze.com
Bioma Taiga yaitu bentuk ekosistem yang mempunyai ciri berdaun jarum (kolifer). Jika kita melirik di bagian selatan dari Tundra akan didapati bentuk kelompok tanaman pohon jarum. Batas antara dua bentuk ekosistem Tundra serta Taiga disebut dengan batas pohon lantaran lokasi ini masih memungkinkan tumbuhnya pohon-pohon maupun tidak.

Bioma Tundra 
Sumber: bioexpedition.com
Bioma tundra yaitu bentuk ekosistem dengan lokasi yang tidak mempunyai pohon-pohon. Lokasi ini dapat diketemukan di dearah kutub yang amat dingin.

Serta bentuk tumbuhan yang dapat bertahan di ekosistem ini cuma gulam serta lumut kerak serta tumbuhan yang dominan yaitu Sphagnum, liken, tumbuhan biji semusim, tumbuhan kayu dengan batang pendek dan rumput.

Ekosistem Air Tawar 

Ekosistem air tawar adalah bentuk ekosistem yang mempunyai ciri diantaranya macam suhu yang tidak menyolok, penetrasi sinar kurang serta di pengaruhi oleh iklim serta cuaca.

Pada ekosistem air tawar umumnya tanaman yang tumbuh serta seringkali ditemui yaitu ganggang serta tumbuhan biji.

Ekosistem air tawar bisa digolongkan berdasarkan sifatnya jadi dua bentuk yaitu air tenang serta air mengalir. Danau dan rawa masuk ke dalam kelompok ekosistem air tenang sedangkan sungai masuk ke dalam kelompok ekosistem air mengalir.

Ekosistem Air Tawar

Danau 
Sumber: fairyterritory.blogspot.co.id
Danau adalah kumpulan air yang menggenang di atas lokasi depresi atau cekungan yang luasnya dari mulai beberapa meter persegi sampai beberapa ratus meter persegi.

Keadaan danau bila dilihat dari kedalaman memliki ketidaksamaan yang menyolok. Danau dengan kedalaman spesifik akan hidup tumbuhan serta hewan spesifik juga.

Oleh karena itu danau dibedakan lagi jadi 4 daerah yang berbeda yakni: 
  1. Daerah Litorial, Daerah litorial yaitu sisi danau dengan kedalaman yang dangkal hingga sinar matahari dapat menembus hingga ke dasar danau secara maksimal. 
  2. Daerah Limnetik, Berbeda dengan daerah litorial, daerah limnetik yaitu daerah yang masih tetap dapat ditembus oleh cahaya matahari. Bentuk hewan yang dapat diketemukan di sini yaitu fitoplankton. Serta fitoplankton dimangsa oleh udang kecil. 
  3. Daerah Profundal, Daerah profundal yaitu daerah yang ditempati oleh hewan seperti cacing serta mikroba. Bentuk daerah ini dapat kerap disebut juga dengan daerah afotik danau. 
  4. Daerah Bentik, Daerah bentik yaitu daerah dasar danau yang ditempati oleh bentuk organisme mati serta bentos. 
Ekosistem Air Tawar Bersumber pada Produksi Materi Organik 

Tidak hanya dibedakan berdasarkan kedalaman serta jarak, danau dapat juga dibedakan bersumber pada produksi materi organiknya, diantaranya:
  1. Danau Oligotropik, Danau Oligotropik yaitu bentuk danau yang di dalamnya ada bentuk hewan fitoplanklon tetapi tidak produktif hingga kekurangan nutrisi. Keunikan danau ini yaitu airnya yang amat jernih, organisme yang hidup amat sedikit serta ada oksigen yang cukup sepanjang tahun. 
  2. Danau Eutropik, Danau Eutropik yaitu danau dangkal tetapi mempunyai fitoplankton yang banyak serta produktif hingga kaya akan nutrisi. Tetapi sayangnya danau ini mempunyai air yang keruh, bermacam bentuk organisme serta cukup oksigen. 
Ekosistem Air Tawar

Sungai 
Sumber: dhemasdewata.blogspot.co.id
Sungai adalah bentuk ekosistem air tawar yang mempunyai daerah yang cukup besar. Tidak sama dengan danau yang airnya cenderung diam. Air sungai mengalir dari tempat tinggi ke permukaan yang rendah.

Hingga tidak mensupport adanya hewan plankton di lokasi ini. Tetapi, tumbuhan seperti ganggang tetap dapat berkembang oleh karena adanya cahaya matahari hingga membantu proses potosintesis serta rantai makanan.

Belakangan ini ekosistem sungai mulai mengalami masalah lantaran pembangunan bendungan maupun waduk. Kehadiran waduk bisa memutus rantai makanan beberapa ikan yang bergerak dari hulu ke hilir untuk bertelur.

Oleh karena itu, banyak spesies ikan hilang dari alirang sungai. Misalnya yaitu ikan sidat serta ikan pelus. Kedua ikan ini keberadaannya nyaris punah. Sebab untuk bertelur ikan pelus menempatkan telurnya di laut serta untuk mencari makanan di sungai.

Ekosistem Air Laut 

Sama seperti dengan darat, ekosistem air laut dibedakan jadi 4 diantaranya:

Laut 
Sumber: search.yahoo.co.jp
Seperti di ketahui kalau 2/3 dari bumi yaitu laut. Air laut mempunyai kandungan garam atau NaCl yang amat tinggi terlebih laut merah. Air laut mempunyai sahu yang beragam. Di daerah beriklim tropis, suhu air laut beragam yaitu mencapai 25 derajat C serta suhu di atas serta di bawah permukaan mempunyai perbedan yang cukup besar.

Bagian antara susunan air hangat yang ada pada bagian atas dengan yang dingin pada bagian bawah diberi nama batas termoklin. Ekosistem air laut bersumber pada letak kedalamannya dibedakan jadi 4 lokasi yaitu:
  1. Lokasi Pasang (Littoral), Lokasi pasang atau littoral adalah sisi dari dasar laut yang kering bila terjadi surut. Jadi, ikan tidak dapat hidup di lokasi ini tetapi beberapa bentuk binatang darat dapat ditemui di lokasi ini. 
  2. Lokasi Laut Dangkal (Neritic), Lokasi laut dangkal atau neritic yaitu lokasi dengan kandungan airnya sedikit hingga masih tetap memungkinkan cahaya matahari tembus ke permukaan dasar laut. Indoensia sendiri mempunyai beberapa lokasi laut yang dangkal. Misalnya Laut Jawa, Natuna, Kepulaun Riau, Selat Malaka yang kerap disebut juga landas kontinen sunda. Serta Laut Arufu yang disebut juga landas kontinen sahul. 
  3. Lokasi Lautan Dalam (Bathyal), Lokasi lautan dalam yaitu lokasi laut yang ada pada kedalaman antara 150 – 800 meter. Jadi amat susah untuk cahaya matahari yang tembus ke dasar laut seperti pada lokasi laut dangkal. 
  4. Lokasi Laut Amat Dalam (Abyssal), Lokasi laut amat dalam yaitu lokasi dengan kedalaman di bawah 800 meter. Dengan kedalaman nyaris 1 km itu amat susah untuk tanaman agar bisa hidup ataupun bertahan lantaran sumber sinar tidak dapat menembusnya. Hingga jumlah hewan ataupun tumbuhan amat terbatas terkecuali beberapa jenis hewan yang dapat bertahan di lingkungan itu. 
Pantai 
Sumber: pantai-indah.com
Pantai yaitu sisi ekosistem laut yang terdapat di antara 2 ekosistem yakni ekosistem darat serta laut. Bersumber pada tata letaknya, ekosistem pantai berbatasan dengan ekosistem darat, laut ataupun daerah gunakan surut.

Estuari 
Sumber: thinglink.com
Estuari yaitu tempat bertemunya antara sungai dengan laut atau umum disebut juga dengan muara. Sehinngga nutrisi yang dibawa bersamaan dengan proes erosi dapat memperkaya sungai ataupun daratan.

Adapun salinitas di estuari di pengaruhi oleh siklus harian dengan pasang surut air. Di saat pasang, air laut akan masuk ke tubuh sungai untuk meningkatkan salinitasnya.

Terumbu Karang 
Sumber: blogs.uajy.ac.id
Terumbu karang yaitu bentuk ekosistem yang bisa ditemui di daerah beriklim tropis dengan ciri airnya jernih, hingga amat gampang untuk cahaya matahari untuk masuk atau menembus ke permukaan laut hingga amat gampang untuk terjadinya proses fotosintesis.

Lokasi ini didominasi oleh karang atau koral yang masuk ke dalam kelompok Cnidaria. Terumbu karang populer dengan beragam macamnya. Salah satunya ikan hias yang bernilai tinggi. Tetapi banyak dilihat lantaran ulah tangan jahil manusia keadaan terumbu karang saat ini amat memprihatinkan.

Dan itulah pembahasan kami mengenai Pengertian, Komponen, dan Macam–Macam Ekosistem, untuk berbagai informasi yang kami sajikan pada kesempatan ini, harapannya semoga Postingan kali ini mengenai Macam–Macam Ekosistem di atas sedikitnya dapat menambah pengetahuan tersendiri bagi anda para pembaca.

Khususnya bagi anda yang saat ini sedang mencari sumber pengetahuan untuk lebih memahami Segala Hal tentang Ekosistem. Terima kasih atas kunjungannya dan salam sukses untuk sahabat semuanya.

Referensi:
  1. berkahkhair.com